Chapter 10 FRQ Homework

1.

For $t \ge 0$, a particle is moving along a curve so that its position at time t is (x(t), y(t)). At time t = 2, the particle is at position (1, 5). It is known that $\frac{dx}{dt} = \frac{\sqrt{t+2}}{e^t}$ and $\frac{dy}{dt} = \sin^2 t$.

- (a) Is the horizontal movement of the particle to the left or to the right at time t = 2? Explain your answer. Find the slope of the path of the particle at time t = 2.
- (b) Find the x-coordinate of the particle's position at time t = 4.
- (c) Find the speed of the particle at time t = 4. Find the acceleration vector of the particle at time t = 4.
- (d) Find the distance traveled by the particle from time t = 2 to t = 4.

2.

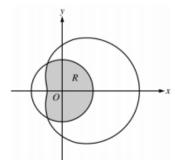
The polar curve r is given by $r(\theta) = 3\theta + \sin \theta$, where $0 \le \theta \le 2\pi$.

- (a) Find the area in the second quadrant enclosed by the coordinate axes and the graph of r.
- (b) For $\frac{\pi}{2} \le \theta \le \pi$, there is one point *P* on the polar curve *r* with *x*-coordinate -3. Find the angle θ that corresponds to point *P*. Find the *y*-coordinate of point *P*. Show the work that leads to your answers.
- (c) A particle is traveling along the polar curve r so that its position at time t is (x(t), y(t)) and such that $\frac{d\theta}{dt} = 2$. Find $\frac{dy}{dt}$ at the instant that $\theta = \frac{2\pi}{3}$, and interpret the meaning of your answer in the context of the problem.

3.

The velocity vector of a particle moving in the plane has components given by

$$\frac{dx}{dt} = 14\cos(t^2)\sin(e^t) \text{ and } \frac{dy}{dt} = 1 + 2\sin(t^2), \text{ for } 0 \le t \le 1.5.$$


At time t = 0, the position of the particle is (-2, 3).

- (a) For 0 < t < 1.5, find all values of t at which the line tangent to the path of the particle is vertical.
- (b) Write an equation for the line tangent to the path of the particle at t = 1.
- (c) Find the speed of the particle at t = 1.
- (d) Find the acceleration vector of the particle at t = 1.

4.

The graphs of the polar curves r=2 and $r=3+2\cos\theta$ are shown in the figure above. The curves intersect when $\theta=\frac{2\pi}{3}$ and $\theta=\frac{4\pi}{3}$.

- (a) Let R be the region that is inside the graph of r=2 and also inside the graph of $r=3+2\cos\theta$, as shaded in the figure above. Find the area of R.
- (b) A particle moving with nonzero velocity along the polar curve given by $r = 3 + 2\cos\theta$ has position (x(t), y(t)) at time t, with $\theta = 0$ when t = 0. This particle moves along the curve so that $\frac{dr}{dt} = \frac{dr}{d\theta}$.

Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.

(c) For the particle described in part (b), $\frac{dy}{dt} = \frac{dy}{d\theta}$. Find the value of $\frac{dy}{dt}$ at $\theta = \frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.